Shift Operators and Factorial Symmetric Functions

نویسندگان

  • Ian P. Goulden
  • Angèle M. Hamel
چکیده

A new class of symmetric functions called factorial Schur symmetric functions has recently been discovered in connection with a branch of mathematical physics. We align this theory more closely with the s tandard symmetric function theory, giving the factorial Schur function a tableau definition, introducing a shift operator and a new generat ing function with which we extend to factorial symmetric functions proofs of various determinantal identities for classical symmetric functions, and defining a new factorial symmetric func t ion the factorial e lementary symmetric function. © 1995 Academic Press, Inc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shift Invariant Spaces and Shift Preserving Operators on Locally Compact Abelian Groups

We investigate shift invariant subspaces of $L^2(G)$, where $G$ is a locally compact abelian group. We show that every shift invariant space can be decomposed as an orthogonal sum of spaces each of which is generated by a single function whose shifts form a Parseval frame. For a second countable locally compact abelian group $G$ we prove a useful Hilbert space isomorphism, introduce range funct...

متن کامل

Complex Symmetric Operators and Applications

We study a few classes of Hilbert space operators whose matrix representations are complex symmetric with respect to a preferred orthonormal basis. The existence of this additional symmetry has notable implications and, in particular, it explains from a unifying point of view some classical results. We explore applications of this symmetry to Jordan canonical models, selfadjoint extensions of s...

متن کامل

An application of Shift Operators to ordered symmetricspacesNils

We study the action of elementary shift operators on spherical functions on ordered symmetric spaces M m;n of Cayley type, where m 2 N denotes the multiplicity of the short roots and n 2 N the rank of the symmetric space. For m even we apply this to prove a Paley-Wiener theorem for the spherical Laplace transform deened on M m;n by a reduction to the rank 1 case. Finally we generalize our notio...

متن کامل

Difference Equations and Symmetric Polynomials Defined by Their Zeros

In this paper, we are starting a systematic analysis of a class of symmetric polynomials which, in full generality,was introduced in [Sa]. The main features of these functions are that they are defined by vanishing conditions and that they are nonhomogeneous. They depend on several parameters, but we are studying mainly a certain subfamily which is indexed by one parameter, r. As a special case...

متن کامل

Commutative curvature operators over four-dimensional generalized symmetric spaces

Commutative properties of four-dimensional generalized symmetric pseudo-Riemannian manifolds were considered. Specially, in this paper, we studied Skew-Tsankov and Jacobi-Tsankov conditions in 4-dimensional pseudo-Riemannian generalized symmetric manifolds.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 69  شماره 

صفحات  -

تاریخ انتشار 1995